Extract from the book:

OPC Unified Architecture

Mahnke, Wolfgang, ABB Corporate Research
Leitner, Stefan-Helmut, ABB Corporate Research
Damm, Matthias, ascolab GmbH

2009, Approx. 300 p. 100 illus., Hardcover
ISBN: 978-3-540-68898-3

© Springer-Verlag Berlin Heidelberg 2009

OPC Unified
Architecture

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, Daniatthias
ISBN: 978-3-540-68898-3

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, DaniMatthias
ISBN: 978-3-540-68898-3

Conclusion and Outlook

14 Conclusion and Outlook

14.1 OPC UA in a Nutshell

OPC Unified Architecture (OPC UA) is the new stambfor data communication
in process automation and beyond, provided by tR€ G-oundation. It is ex-
pected that OPC UA will replace the very succes$fitrosoft-DCOM-based
specifications of the OPC Foundation (DA, HDA, ah&E) over the next few
years as OPC UA unifies all the functions providsdthose specifications. Be-
cause of its platform-independence and use of-sfattee-art Web service tech-
nology (see Chapter 6) it is expected that OPC UK he applied in an even
wider range of industries and applications, comgaoeclassic OPC. It can be de-
ployed on devices, DCS, MES and ERP systems. Tl set of easy-to-use ser-
vices (see Chapter 5) allows accessing the uniddiess space in a reliable and
secure manner (see Chapter 7). By using binarydémgmn the wire OPC UA is
a high-performance solution, significantly fasteat XML data exchange (see
Chapter 14).

OPC UA not only addresses data communication g @formation model-
ing (see Chapter 2). With its rich address spacéead allows high-value meta-
data exposure and thus provides significantly miofermation than before. For
this purpose, OPC UA uses object-oriented concapts allows a full-meshed
network of nodes related by multiple types of refexes. There is a high interest
in these capabilities in many domains and therealeady projects to standardize
information models based on OPC UA. Examples ohsgtivities are FDI where
a common field device description is targeted amtirmon activities with PLCo-
pen (Industrial Control), MIMOSA (Maintenance Infoation — ERP and above)
and S95 (Production Information — MES) (see Chapyer

With its profiles (see Chapter 13) OPC UA scaledl vem small servers to
highly sophisticated systems. Small servers ontwiding simple functionality
are able to run on limited hardware, exposing anlgmall set of simple data.
Highly sophisticated servers are able to exposegelamount of complex infor-
mation and to support complex functionality likeegying the address space (see
Chapter 10).

Nevertheless, some people are complaining thatrifivieg is so complicated”
in OPC UA. Therefore, in the next section we wélké a look at this objection
against OPC UA. Finally, there is an outlook exanmgrhow OPC UA may be ap-
plied in the market and what is missing in it,igprove it even further.

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, DanMatthias
ISBN: 978-3-540-68898-3

Conclusion and Outlook

14.2 1sOPC UA Complicated?

Over the last couple of years we had several disons about OPC UA with peo-
ple from different domains, backgrounds and, ofrseu different companies.
Most of them were excited about the power and pdiis that OPC UA offers.
However, there were a few people complaining ableeicomplexity of OPC UA.
A quick and simple answer is that OPC UA is vempe for users of base func-
tionality. For users of advanced features, it is cmmplex but as simple and ge-
neric as possible, and still very powerful. Of cgmithis answer does not really
help to convince people. Thus, in the followingts®ts, we explain the features
involved in several different places in OPC UA, whig designed in the way it is,
and what this means for people actually using ORPC The management sum-
mary is given in Section 0.

14.2.1 Are OPC UA Services Difficult to Handle?

Looking at the OPC UA services, you can see thaadly the number of services
is very small. OPC UA has only 37 services, of Wwhigree services deal with dis-
covery and six with connection handling. That lea28 services to actually ac-
cess OPC UA data. Let us compare that with theanttivery successful OPC DA
specification. This specification deals only witlm@nt data, not events, history or
a rich information model and thus deals only witsubset of functionality pro-
vided by the OPC UA specification. Nevertheless, ofd OPC DA specification
had nearly 70 methodsThat shows that the OPC UA service framework is de
signed for simplicity. The intention was not to yide two services offering the
same functionality in a different manrfelhus OPC UA does not offer several
services with browsing functionality but one Browsarvice that allows the set-
ting of filters on References, NodeClasses, etd. specifying what information
should be returned, such as the name or the typgasmation of the referenced
node.

OPC UA services are designed in a service-oriemtadner, always providing
bulk operations. For example the Call service dugcall a single method but al-
lows calling a set of methods with one service. CHtlat design principle reduces
the number of roundtrips for a set of operationd Bna common feature in ser-

1 The OPC DA specification does not use a pure oljgented design but supports bulk opera-
tions instead of simple methods and thus the nusrdrer comparable.

2 There are some minor exceptions from that rule.es@mple, the Read service and the sub-
scription mechanisms both provide access to ad@tal However, the use cases are very differ-
ent and thus the simple Read only reading a vailge and the subscription requiring some setup
first and then getting changes of the value arh bopported.

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, DanMatthias
ISBN: 978-3-540-68898-3

Conclusion and Outlook

vice-oriented architecture. It is also used in objiented APIs like the OPC DA
specification and a reasonable compromise betwiegplisity and performance.

There are three concepts in the OPC UA servicedweark that can be consid-
ered to be complex: First of all the query captibdiof OPC UA, second the pub-
lish mechanism of OPC UA, and third the connecéstablishment.

In the first case the complexity is inherent to gievided functionality. Com-
plex queries are complex in SQL [ISO08a] or OQL E3B0] as well. Queries
are an optional feature in OPC UA and many serwdrsiot support it and it does
not even make sense to support it in many scenatti@se the amount of data in
the server is small and browsing the address spabe best way to deal with the
data. However, there will be OPC UA servers hawdniguge address space with
millions of nodes and in that scenario the queryiagabilities become a require-
ment to efficiently find data in the server. Butcamplex problem cannot be
solved without any complexity.

The second complex concept of OPC UA is the pubtigithanism. The pub-
lish mechanism allows the logical callback to asypoously send notification
messages to a client containing data changes ot ee¢a without establishing a
real backward channel from the server to the cli€hé main reason for designing
the publish mechanism in that way was that OPC Wfemtially runs in a Web
Service environment, connecting clients and seroees the Internet or intranet,
having firewalls between them. In that environmdng easy to “talk” from a cli-
ent to a server but often impossible to “talk” frahre server to the client (that
would require the server to be a client and morgoirtant the client to become a
server). Introduced as a second method to do citthahe OPC UA working
group found that the publish mechanism is alwayg@sd as a real callback
mechanism, considering the additional requiremdnsemding keep-alive mes-
sages and sequence numbers to have a reliable guoation in an unreliable
environment. Thus the callback approach was disch@hd only the publish
mechanism is part of the OPC UA specification gsdtvides the same functional-
ity as a real callback. In addition, the callbac&amanism would highly increase
the complexity regarding security mechanisms, aghem secure connection has
to be established from the OPC UA server to thentliHere again the simplicity
of the OPC UA service framework can be seen: onky method is available for
one purpose. However, it requires some time toytwiderstand the publish
mechanism. The good news is that only a very smatiber of people really have
to understand the mechanism. Most people will useraer or client SDK that
deals with the mechanism and provides real calbautiernally.

The third complex concept in OPC UA is connectistablishment. This step
requires establishing a secure channel. On topeokécure channel a session has
to be created. The secure channel provides seanithe transport level, which

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, Danatthias
ISBN: 978-3-540-68898-3

Conclusion and Outlook

means that messages can be encrypted and SigodlC UA uses WS-
SecureConversation as part of the WS-* standardjISA7] for its secure chan-
nel when SOAP messages are exchanged in the Wdbesesorld and adapts this
specification to UA-SecureConversation when thehhpgrformance UA TCP is
used. Details of the technologies used for sechaamels are given in Chapter 7,
including why no standard protocols like TLS/SSlndae used, based on re-
quirements for OPC UA, such as having long-runmagnections, etc. On top of
such a secure channel, multiple sessions can la¢edredecoupling the secure
communication from the session management on tpé&cation level. The de-
scribed steps are very common and a good secuw#tigid in various ways. There-
fore they are necessary for ensuring a securediadle communication between
clients and servers. The good news is that agdinafew people really have to
deal with it, as an OPC UA SDK will provide a coohenethod that hides the
handshaking to establish a connection.
To summarize the discussion:

1. The OPC UA service framework (measured by the nurabservices) is very
simple.

2. OPC UA services are designed for bulk operatiorevtid roundtrips. This in-
creases the complexity of the services but graatjyroves the performance.
Also, classic OPC has been designed in a similar faamost methods. Han-
dling of bulk operations is commonly used and this not “too complex to be
used”.

3. OPC UA queries are complex; however this is parthefaddressed problem.
OPC UA queries are an optional feature, useful émlyarge address spaces.

4. The publish mechanism of OPC UA is required in sminents where the
OPC UA client cannot act as a server (firewall)indonly this mechanism re-
duces the complexity of OPC UA (compared to addingal callback, espe-
cially if security is considered). OPC UA SDKs wiilide the mechanism and
provide real callbacks anyway.

5. The connection establishment in OPC UA uses prasemurity mechanisms
and adapts them to the needs of OPC UA. Thus soessages have to be ex-
changed, but this complexity will be hidden by aR@UA SDK offering only
a connect method.

Thus OPC UA services are not complex but very smyith regard to the pro-
vided functionality and the addressed non-funcfioequirements such as security
and reliability. Using an SDK will further hide tlmomplexity in the services, for
example, by hiding the connection establishmentthagublish mechanism.

3 Security has to be implemented in certified OPC pwaducts (see Chapters 7 and 13).
Whether security is enabled in a concrete instafladlepends on the configuration based on the
security requirements of the installation.

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, DaniMatthias
ISBN: 978-3-540-68898-3

Conclusion and Outlook

14.2.2 |slInformation Modeling a Pain?

OPC UA does not only standardize the data commtiaitdut also provides a
meta model allowing standardized information modwlgdt on top of it. The old
OPC DA specification provided a very simple butited way to expose data
items in a hierarchy. OPC UA supports the same Isimpproach to build a hier-
archy of data variables but it also allows exposioly models.

There are other specifications like DSSP [MSO7D&WS [MSO06] that only
standardize the data exchange without specifyingoalel. They may define a
fixed or extendable set of operations that a sepvevides and a client can call.
The client can ask for the meta data of the opmmatie., what data the operation
will provide. However, there is no fixed syntaand semantic for the data ex-
changed. Obviously those specifications look lemspicated at first glance as
they exclude the modeling capabilities. But letale a look at Fig. 14.1 and Fig.
14.2 to see the implications of those differentrapphes. With a standardized
protocol for data communication, there is interabdity between applications on
the communication level (right side of Fig. 14.Here, no point-to-point integra-
tion is needed as in the left side of Fig. 14.1.

Proprietary Protocols Standard Protocol

T
N Ry S d

> Standard Protocol

‘ Server 2

‘ Client 1 ‘ ‘ Client2 ‘ ‘ Client3 ‘ ‘ Client 1 ‘ ‘ Client2 ‘ ‘ Client3 ‘

N P

‘ Server 3 ‘ Server 1 Server 3

‘ Server 1

‘ Server 2

Point-to-point integration on protocol level required Each tool only need to suport the standard protocol

Fig. 14.1 Interoperability on protocol level

But if no meta model is provided and the structfréhe exchanged data depends
on a concrete applicatiSrthere is no interoperability on what data are exgjed,
and therefore no interoperability at the model I€iedt side of Fig. 14.2). Clients
cannot generically interpret the data providedh®yderver and cannot generically
provide data to the server.

4 Other then XML without an XML-Schema.
5 And of course a client also has to send datagsénver in a format the server expects.

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, DanMatthias
ISBN: 978-3-540-68898-3

Conclusion and Outlook

Standard Protocol and Proprietary Model Standard Protocol and Standard Meta Model

‘ Client 1 ‘ ‘ Client 2 ‘ ‘ Client3 ‘ ‘ Client 1 ‘ ‘ Client 2 ‘ ‘ Client 3 ‘

Standard Protocol

Standard Meta Model

‘ Server 1 ‘ ‘ Server 2 ‘ ‘ Server 3 ‘ ‘ Server 1 ‘ ‘ Server 2 ‘ ‘ Server 3 ‘

Point-to-point integration on model level required Each tools understand the exchanged structures
(understanding does not only means the syntax is
understandable (e.g. XML) but also the semantic)

Fig. 14.2 Interoperability on model level

OPC UA offers a solution shown in the right side=aj. 14.2. It provides the data
in a way that generic OPC UA clients are able tal @éth all the data (subscribe
to data, browse the address space, etc.). HowoRL, UA still allows servers to
define their domain and vendor-specific model, dase the standardized meta
model. The services are all based on the meta naodkthus a generic client can
deal with all the data. But not all semantic of dwcrete model is directly cap-
tured in the meta model since it is an extensibéelehand not a concrete model
tailored to one specific domairnHowever, the meta model provides all informa-
tion about the extensions and thus a generic ctianteasily display all semantic
information, but some of them have to be interptédtg a user. Clients can be im-
plemented with built-in knowledge of concrete OP& ldformation Model Stan-
dards and thus no additional interpretation byuser is needed.

Let us take a quick look at the implications foleot and server developers,
whether a meta model is provided or not. Obvioullying a common model
makes life much easier for client developers ay tte implement their clients
with knowledge of one model supported by all sesvétherwise they would
have to deal with several servers providing diffiérdata structures. However,
leaving the data structures undefined seems liggeeat opportunity for server de-
velopers. They have complete freedom to do whattheyr want to do. But they
also have all the work to do. It took the OPC UArking group several years to
develop the meta model that is able to access hadge real-time related data,
alarms and events, and the history of both. Of smar specific server does not
have to provide a generic meta model as OPC UAdds, but there is still a lot

6 The OPC UA meta model is tailored to the broad a@ionof exchanging real-time related data,
including events and history, but not to a concdemain like drilling or pulp and paper.

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, DanMatthias
ISBN: 978-3-540-68898-3

Conclusion and Outlook

of work to do and many pitfalls to avoid. And afteeating their own model they
have to document it, so that clients are able taageess to the data and users un-
derstand at least a basic semantic so they aret@loeal with the provided data
and the ways to access them. Looking at all thaskst mapping the data to a
well-defined meta model and enriching the servea twoncrete model using the
extension mechanisms does not seem so complicayedose.

After explaining the need for a meta model in OP& there is still the ques-
tion of its complexity. The classic OPC specifioas, for example, only provided
on€ concrete and very simple model. The reason foingathe more powerful
and more complex model in OPC UA is that it allogxposing much more se-
mantic and thus much more information. Since OPCddAs not target one con-
crete domain, it allows defining information modéds concrete models tailored
to specific domains. Therefore we have typed objecd references, etc. To ex-
pose more information in a usable way more concept® to be introduced and
this increases the complexity. However, the conipteis found in the informa-
tion provided additionally. If no additional infoation needs to be provided, the
OPC UA model becomes very simple. For example GRE€ DA wrapper of the
OPC Foundation wraps any OPC DA server. Since tA€ DA server does not
provide complex information, the OPC UA model o thrapper is very simple
(see Chapter 11). It contains only one hierarchth WIPC UA Folder Objects for
the OPC DA Branches and OPC UA Variables for th&€ @A Items. OPC DA
properties are provided as OPC UA Properties. Naildd type information (all
Objects are of the same type), no additional Rafsr€ypes, no ModelChan-
geEvents tracking changes on the model, no otmayfatuff is to be found. It is
optional to use those features and it does not rsakee to use them in many
cases. However, if you need to provide more infaiona it is very useful to have
those concepts in place so you can use them apgiedgr As it is the choice of
the server to use features regarding the modaélirig,the choice of the client to
decide what features it wants to use. Programmijagnat types is a very powerful
feature and very helpful when creating process hgeapor other user interfaces
specific for certain OPC UA types. However, a sinpglient providing only
browsing capabilities will never use this feature.

Information modeling can be done very easily, kegmverything very simple.
Then little effort is required and using some vbasic OPC UA modeling con-
cepts keeps everything very simple. The OPC DA peaps a good example of
that approach. But if more information must be jed OPC UA is equipped
with the necessary concepts to allow it. The comiplds based on the informa-
tion to be modeled, not in OPC UA itself.

7 Actually one per specification.

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, Danatthias
ISBN: 978-3-540-68898-3

Conclusion and Outlook

14.2.3 Transport Protocols and Encodings: Why So Many?

OPC UA defines an abstract set of services thatapped to different technolo-
gies. Currently there are two protocol mappings aalencodings supported. The
reason for having abstract services is that, i&a rechnology for data communi-
cation enters the stage, OPC UA can be adaptdthtddchnology just by defin-
ing another mapping. But why does OPC UA suppod protocols and two en-
codings from the beginning? The reason is that QRCwill be applied in
different application domains with different recgrinents. Supporting HTTP and
UA TCP (see Chapter 6) allow it to run Internet laggtions crossing firewalls
with HTTP as well as running optimized applicatiomigh limited resources via
the UA TCP protocol, which is optimized for the wi(no overhead) and the
needed resources (no HTTP stack needed). But tireaptimization on the wire
is not UA TCP versus HTTP but exchanging binaryoeiec! data versus XML en-
coded data. Unlike other protocols, OPC UA doesrequire the data to be first
converted to XML and then binary encoded; the datdirectly binary encoded
and is thus very efficient. However, there are iggtibns that do not need high
performance but data provided in a generic way ¢tvihiowadays means in XML)
to be able to handle them easily. Those applicatée typically placed not on the
bottom, but the top of the automation pyramid. Efi@e OPC UA supports XML
encoding as well. Fig. 14.3 summarizes the useffdrent protocol options in a
simplified form.

Generic web
service clients

Protocol Encoding

HTTP XML

Fast access over the

HTTP UA Binary Wﬁlall) ,
UATCP UA Binary a
Operations Network
Fast access
N HMI .
§ i irewall

Plant Floor Network

$ﬁonlmllers @ Controllers

Fig. 14.3 Simplified view of OPC UA transport protocols amttedings

&

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, DaniMatthias
ISBN: 978-3-540-68898-3

Conclusion and Outlook

After understanding why OPC UA supports differemthnology mappings, we
will discuss how this affects people dealing witR©UA. The good news is that
anybody using an OPC UA SDK or even only an OPCdtltk provided by the
OPC Foundation could not care less about that. ORE UA services stay the
same and thus the server or client implementati@ypsghe same, no matter what
the stack uses to communicate with another stak Ghapter 9 for details). Only
those people developing stacks or using generigitspfor example, to generate
clients talking to Web services (e.g., by a WSDig affected by supporting dif-
ferent protocols and encodings. It is the job atktdevelopers, so we will not ar-
gue about that. Generic toolkit users bound tachrtelogy like Web services are
bound to the technology provided by the toolkitt Biose users choose to use that
generic toolkit (which is of course reasonable @me scenarios) and therefore
they are intentionally bound to that technologyisTlbads to potential interopera-
bility problems between OPC UA servers and OPC WUénts supporting differ-
ent technologies. But here again OPC UA profilesaagood mechanism to avoid
that and new technologies are not provided so dftahone must fear an explo-
sion on OPC UA technology mappings.

14.2.4 Implementation I ssues

A few people have complained about the lack of astréf OPC UA SDKs. This
is of course something we cannot answer in ger®rait depends on the used
SDK. As a general statement, people have to beeath@mt OPC UA is a new
specification and thus people are dealing more wéleloping initial products
than with providing a perfect SDK. The comfort oPO UA SDKs will increase
in future® However, the SDKs we are aware of already suphartdeveloper
quite well by implementing all the housekeepingctions of the OPC UA service
framework.

Let us take a look at server-side development. ¥owot have to deal with
subscriptions; you only have to provide the datd tre to be published. You do
not have to deal with queue management, repubgisiunpacking of data. There
is infrastructure to manage OPC UA nodes in theeseThus you only have to
configure the Address Space of your server. This lwa done by an XML con-
figuration where most of the code is generated.

On the client-side, you get real callbacks, you cannect by one call, etc. So
there is already a lot of comfort in the SDKs we aware of. However, there is
still room for improvements, e.g., fancy wizardgghical modeling tools, etc.

8 This is a general statement true for all SDKsllin@mains. The comfort and quality of an SDK
always increases from very early versions (1.0vendess) to higher and more stable versions.

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, Danatthias
ISBN: 978-3-540-68898-3

Conclusion and Outlook

14.2.5 Migration of Existing Code

For somebody with classic OPC servers and clignteight seem like a large
amount of work migrating to OPC UA. Since the ORflikdation provides wrap-
pers for the classic OPC servers as well as prdarethe classic OPC clients, this
is obviously not true if you do not want to changeir existing code. You simply
deploy the provided proxies or wrappers with yoxistng product and you are
ready for OPC UA. However, let us take a quick ledkvhat you need to do for
native OPC UA support in existing products. As OBPE& is the most popular
classic OPC specification, we will examine whatltoin that case.

In the case of an OPC DA client, it is easy toaeplthe existing code for read-
ing, writing, and adding groups and items to regedata changes with similar
concepts from UA, such as subscriptions and maitdgtems. UA client SDKs
will provide data change callbacks on top of a stipion hiding the publish
mechanism. The biggest change is the handling ofeMfs instead of pure string
based ItemIDs in old OPC DA. For the configuratpart the browsing and prop-
erty access methods from OPC DA can be replacdd tvé UA browse service
calls. This is all the functionality most OPC DAecits use today.

In the case of an OPC DA server, there are ongwadervices that need to be
implemented like Read, Write, Browse and the dejive data changes to a UA
SDK. All other services are implemented by a UA S&xare not needed for sup-
porting DA functionality. Providing the requiredtdamodel is also very simple as
exposing a pure DA address space with no type myates only a small number
of predefined types of OPC UA.

As the OPC UA design is generic and extensiblis, @#asy to choose an itera-
tive development approach to add UA features owee to a product, starting
with a pure DA implementation. For example, to &@C UA Method support, a
product must implement one more UA service androoee NodeClass to expose
the Methods in the Address Space.

Let us assume you plan to migrate your producta togher-level program-
ming language like JAVA or .NET. Using classic ORfguires you to deal with
the interop from COM to the modern programming leage. This can become a
real problem when you deal with multiple threadi® life-cycle of COM objects,
etc. [Ge03]. Instead you can directly target OPC &sAcommunication interface.
Here, your product can use UA SDKs and stacks elgtideveloped for those
programming languages. Thus, the new code is sephfeom any COM-based
code. To connect to classic OPC products, you canthe wrappers and proxies
provided by the OPC Foundation. This is exemplifiedrig. 14.4, where a C++-
based OPC DA client is migrated to .NET and use€ QR as the new commu-
nication infrastructure.

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, DaniMatthias
ISBN: 978-3-540-68898-3

Conclusion and Outlook

Scenario before migrating code

Scenario after migrating code

JoPC UA ‘ OPC DA Server
Wrappev
COM is not needed
NET- based OPC UA Client ‘ OPC UA Server

Fig. 14.4 Migrating classic OPC applications to modern prograng languages using OPC UA

To summarize this section, OPC UA gives you a nealsle migration strategy to
move a classic OPC environment to OPC UA in diffietevels. The lowest level

is to use the proxies and wrappers; the next lisvie expose the same level of in-
formation you expose today with UA and the nextkleg to add additional UA

features like Methods or a type system over tirhgoll want to migrate your code
to a modern programming language, using OPC UAidesvyou a solution that

does not require you to deal with all the COM infeproblems and allows sepa-
rating your new code from COM.

14.2.6 Management Summary

OPC UA is just as complex as it has to be, tolfulfie requirements of a secure
and reliable communication, able to run in difféarenvironments including dif-
ferent networks separated by firewalls. The binangoding provides high per-
formance data exchange. Unlike other protocols @RCdefines a meta model
and thus not only provides interoperability regagdihe protocol but also regard-
ing the exchanged data. By defining an extensibetmodel with all the infor-
mation necessary to know what data have to be egegthbut still allowing re-
finements and extensions to the model OPC UA ilsuited compromise for a
specification applied in various domains. Inforrmatimodel standards based on
OPC UA define a more specific model tailored to deenain that is extended by
vendor specific information. Generic OPC UA clien# easily access all this in-
formation. OPC UA profiles allow servers to be sdafrom small servers with
limited functionality able to run on limited resaes to highly sophisticated serv-
ers providing a large amount of complex data whthfull power of OPC UA.

Copyrighted Material

Extract from the book:
OPC Unified Architecture
by Mahnke, Wolfgang, Leitner, Stefan-Helmut, DanMatthias
ISBN: 978-3-540-68898-3

